Abstract:Symmetry-informed machine learning can exhibit advantages over machine learning which fails to account for symmetry. Additionally, recent attention has been given to continuous symmetry discovery using vector fields which serve as infinitesimal generators for Lie group symmetries. In this paper, we extend the notion of non-affine symmetry discovery to functions defined by neural networks. We further extend work in this area by introducing symmetry enforcement of smooth models using vector fields. Finally, we extend work on symmetry discovery using vector fields by providing both theoretical and experimental material on the restriction of the symmetry search space to infinitesimal isometries.
Abstract:RF-GAP has recently been introduced as an improved random forest proximity measure. In this paper, we present PF-GAP, an extension of RF-GAP proximities to proximity forests, an accurate and efficient time series classification model. We use the forest proximities in connection with Multi-Dimensional Scaling to obtain vector embeddings of univariate time series, comparing the embeddings to those obtained using various time series distance measures. We also use the forest proximities alongside Local Outlier Factors to investigate the connection between misclassified points and outliers, comparing with nearest neighbor classifiers which use time series distance measures. We show that the forest proximities may exhibit a stronger connection between misclassified points and outliers than nearest neighbor classifiers.
Abstract:Symmetry detection has been shown to improve various machine learning tasks. In the context of continuous symmetry detection, current state of the art experiments are limited to the detection of affine transformations. Under the manifold assumption, we outline a framework for discovering continuous symmetry in data beyond the affine transformation group. We also provide a similar framework for discovering discrete symmetry. We experimentally compare our method to an existing method known as LieGAN and show that our method is competitive at detecting affine symmetries for large sample sizes and superior than LieGAN for small sample sizes. We also show our method is able to detect continuous symmetries beyond the affine group and is generally more computationally efficient than LieGAN.