Abstract:Formulating research questions is a foundational yet challenging academic skill, one that generative AI systems often oversimplify by offering instant answers at the expense of student reflection. This protocol lays out a study grounded in constructivist learning theory to evaluate a novel AI-based Socratic Tutor, designed to foster cognitive engagement and scaffold research question development in higher education. Anchored in dialogic pedagogy, the tutor engages students through iterative, reflective questioning, aiming to promote System 2 thinking and counteract overreliance on AI-generated outputs. In a quasi-experimental design, approximately 80 German pre-service biology teacher students will be randomly assigned to one of two groups: an AI Socratic Tutor condition and an uninstructed chatbot control. Across multiple cycles, students are expected to formulate research questions based on background texts, with quality assessed through double-blind expert review. The study also examines transfer of skills to novel phenomena and captures student perceptions through mixed-methods analysis, including surveys, interviews and reflective journals. This study aims to advance the understanding of how generative AI can be pedagogically aligned to support, not replace, human cognition and offers design principles for human-AI collaboration in education.