Abstract:We introduce a video diffusion model for high-fidelity, causal, and real-time video generation under ultra-low-bitrate semantic communication constraints. Our approach utilizes lossy semantic video coding to transmit the semantic scene structure, complemented by a stream of highly compressed, low-resolution frames that provide sufficient texture information to preserve fidelity. Building on these inputs, we introduce a modular video diffusion model that contains Semantic Control, Restoration Adapter, and Temporal Adapter. We further introduce an efficient temporal distillation procedure that enables extension to real-time and causal synthesis, reducing trainable parameters by 300x and training time by 2x, while adhering to communication constraints. Evaluated across diverse datasets, the framework achieves strong perceptual quality, semantic fidelity, and temporal consistency at ultra-low bitrates (< 0.0003 bpp), outperforming classical, neural, and generative baselines in extensive quantitative, qualitative, and subjective evaluations.