Abstract:SLAM (Simultaneous Localisation and Mapping) is a crucial component for robotic systems, providing a map of an environment, the current location and previous trajectory of a robot. While 3D LiDAR SLAM has received notable improvements in recent years, 2D SLAM lags behind. Gradual drifts in odometry and pose estimation inaccuracies hinder modern 2D LiDAR-odometry algorithms in large complex environments. Dynamic robotic motion coupled with inherent estimation based SLAM processes introduce noise and errors, degrading map quality. Occupancy Grid Mapping (OGM) produces results that are often noisy and unclear. This is due to the fact that evidence based mapping represents maps according to uncertain observations. This is why OGMs are so popular in exploration or navigation tasks. However, this also limits OGMs' effectiveness for specific mapping based tasks such as floor plan creation in complex scenes. To address this, we propose our novel Transformation and Translation Occupancy Grid Mapping (TT-OGM). We adapt and enable accurate and robust pose estimation techniques from 3D SLAM to the world of 2D and mitigate errors to improve map quality using Generative Adversarial Networks (GANs). We introduce a novel data generation method via deep reinforcement learning (DRL) to build datasets large enough for training a GAN for SLAM error correction. We demonstrate our SLAM in real-time on data collected at Loughborough University. We also prove its generalisability on a variety of large complex environments on a collection of large scale well-known 2D occupancy maps. Our novel approach enables the creation of high quality OGMs in complex scenes, far surpassing the capabilities of current SLAM algorithms in terms of quality, accuracy and reliability.
Abstract:SLAM is a fundamental component of modern autonomous systems, providing robots and their operators with a deeper understanding of their environment. SLAM systems often encounter challenges due to the dynamic nature of robotic motion, leading to inaccuracies in mapping quality, particularly in 2D representations such as Occupancy Grid Maps. These errors can significantly degrade map quality, hindering the effectiveness of specific downstream tasks such as floor plan creation. To address this challenge, we introduce our novel 'GAN-SLAM', a new SLAM approach that leverages Generative Adversarial Networks to clean and complete occupancy grids during the SLAM process, reducing the impact of noise and inaccuracies introduced on the output map. We adapt and integrate accurate pose estimation techniques typically used for 3D SLAM into a 2D form. This enables the quality improvement 3D LiDAR-odometry has seen in recent years to be effective for 2D representations. Our results demonstrate substantial improvements in map fidelity and quality, with minimal noise and errors, affirming the effectiveness of GAN-SLAM for real-world mapping applications within large-scale complex environments. We validate our approach on real-world data operating in real-time, and on famous examples of 2D maps. The improved quality of the output map enables new downstream tasks, such as floor plan drafting, further enhancing the capabilities of autonomous systems. Our novel approach to SLAM offers a significant step forward in the field, improving the usability for SLAM in mapping-based tasks, and offers insight into the usage of GANs for OGM error correction.