Abstract:Large language models (LLMs) have demonstrated strong performance across a variety of domains, including logical reasoning, mathematics, and more. In this paper, we investigate how well LLMs understand and reason about complex rule interactions in dynamic environments, such as card games. We introduce a dataset of card synergies from the game Slay the Spire, where pairs of cards are classified based on their positive, negative, or neutral interactions. Our evaluation shows that while LLMs excel at identifying non-synergistic pairs, they struggle with detecting positive and, particularly, negative synergies. We categorize common error types, including issues with timing, defining game states, and following game rules. Our findings suggest directions for future research to improve model performance in predicting the effect of rules and their interactions.
Abstract:In procedural content generation, modeling the generation task as a constraint satisfaction problem lets us define local and global constraints on the generated output. However, a generator's perceived quality often involves statistics rather than just hard constraints. For example, we may desire that generated outputs use design elements with a similar distribution to that of reference designs. However, such statistical properties cannot be expressed directly as a hard constraint on the generation of any one output. In contrast, methods which do not use a general-purpose constraint solver, such as Gumin's implementation of the WaveFunctionCollapse (WFC) algorithm, can control output statistics but have limited constraint propagation ability and cannot express non-local constraints. In this paper, we introduce You-Only-Randomize-Once (YORO) pre-rolling, a method for crafting a decision variable ordering for a constraint solver that encodes desired statistics in a constraint-based generator. Using a solver-based WFC as an example, we show that this technique effectively controls the statistics of tile-grid outputs generated by several off-the-shelf SAT solvers, while still enforcing global constraints on the outputs.1 Our approach is immediately applicable to WFC-like generation problems and it offers a conceptual starting point for controlling the design element statistics in other constraint-based generators.