Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Utilizing unsupervised learning to improve sward content prediction and herbage mass estimation


Apr 20, 2022
Paul Albert, Mohamed Saadeldin, Badri Narayanan, Brian Mac Namee, Deirdre Hennessy, Aisling H. O'Connor, Noel E. O'Connor, Kevin McGuinness

Add code

* 3 pages. Accepted at the 29th EGF General Meeting 2022 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Unsupervised domain adaptation and super resolution on drone images for autonomous dry herbage biomass estimation


Apr 18, 2022
Paul Albert, Mohamed Saadeldin, Badri Narayanan, Jaime Fernandez, Brian Mac Namee, Deirdre Hennessey, Noel E. O'Connor, Kevin McGuinness

Add code

* 11 pages, 5 figures. Accepted at the Agriculture-Vision CVPR 2022 Workshop 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Semi-supervised dry herbage mass estimation using automatic data and synthetic images


Oct 26, 2021
Paul Albert, Mohamed Saadeldin, Badri Narayanan, Brian Mac Namee, Deirdre Hennessy, Aisling O'Connor, Noel O'Connor, Kevin McGuinness

Add code

* Published at CVPPA 2021, ICCVW 2021 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Extracting Pasture Phenotype and Biomass Percentages using Weakly Supervised Multi-target Deep Learning on a Small Dataset


Jan 08, 2021
Badri Narayanan, Mohamed Saadeldin, Paul Albert, Kevin McGuinness, Brian Mac Namee

Add code

* Irish Machine Vision and Image Processing Conference (2020) 21-28 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Machine Learning Prediction of Accurate Atomization Energies of Organic Molecules from Low-Fidelity Quantum Chemical Calculations


Jun 07, 2019
Logan Ward, Ben Blaiszik, Ian Foster, Rajeev S. Assary, Badri Narayanan, Larry Curtiss

Add code


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email