Abstract:In this research, we propose an iterative learning hybrid optimization solver developed to strengthen the performance of metaheuristic algorithms in solving the Capacitated Vehicle Routing Problem (CVRP). The iterative hybrid mechanism integrates the proposed Node-Destroyer Model, a machine learning hybrid model that utilized Graph Neural Networks (GNNs) such identifies and selects customer nodes to guide the Large Neighborhood Search (LNS) operator within the metaheuristic optimization frameworks. This model leverages the structural properties of the problem and solution that can be represented as a graph, to guide strategic selections concerning node removal. The proposed approach reduces operational complexity and scales down the search space involved in the optimization process. The hybrid approach is applied specifically to the CVRP and does not require retraining across problem instances of different sizes. The proposed hybrid mechanism is able to improve the performance of baseline metaheuristic algorithms. Our approach not only enhances the solution quality for standard CVRP benchmarks but also proves scalability on very large-scale instances with up to 30,000 customer nodes. Experimental evaluations on benchmark datasets show that the proposed hybrid mechanism is capable of improving different baseline algorithms, achieving better quality of solutions under similar settings.
Abstract:The Vehicle Routing Problem (VRP) is a complex optimization problem with numerous real-world applications, mostly solved using metaheuristic algorithms due to its $\mathcal{NP}$-Hard nature. Traditionally, these metaheuristics rely on human-crafted designs developed through empirical studies. However, recent research shows that machine learning methods can be used the structural characteristics of solutions in combinatorial optimization, thereby aiding in designing more efficient algorithms, particularly for solving VRP. Building on this advancement, this study extends the previous research by conducting a sensitivity analysis using multiple classifier models that are capable of predicting the quality of VRP solutions. Hence, by leveraging explainable AI, this research is able to extend the understanding of how these models make decisions. Finally, our findings indicate that while feature importance varies, certain features consistently emerge as strong predictors. Furthermore, we propose a unified framework able of ranking feature impact across different scenarios to illustrate this finding. These insights highlight the potential of feature importance analysis as a foundation for developing a guidance mechanism of metaheuristic algorithms for solving the VRP.
Abstract:We propose a metaheuristic algorithm enhanced with feature-based guidance that is designed to solve the Capacitated Vehicle Routing Problem (CVRP). To formulate the proposed guidance, we developed and explained a supervised Machine Learning (ML) model, that is used to formulate the guidance and control the diversity of the solution during the optimization process. We propose a metaheuristic algorithm combining neighborhood search and a novel mechanism of hybrid split and path relinking to implement the proposed guidance. The proposed guidance has proven to give a statistically significant improvement to the proposed metaheuristic algorithm when solving CVRP. Moreover, the proposed guided metaheuristic is also capable of producing competitive solutions among state-of-the-art metaheuristic algorithms.