Abstract:Parkinson's disease (PD) is a progressive neurodegenerative disorder that impacts motor functions and speech characteristics This study focuses on differentiating individuals with Parkinson's disease from healthy controls through the extraction and classification of speech features. Patients were further divided into 2 groups. Med On represents the patient with medication, while Med Off represents the patient without medication. The dataset consisted of patients and healthy individuals who read a predefined text using the H1N Zoom microphone in a suitable recording environment at F{\i}rat University Neurology Department. Speech recordings from PD patients and healthy controls were analyzed, and 19 key features were extracted, including jitter, luminance, zero-crossing rate (ZCR), root mean square (RMS) energy, entropy, skewness, and kurtosis.These features were visualized in graphs and statistically evaluated to identify distinctive patterns in PD patients. Using MATLAB's Classification Learner toolbox, several machine learning classification algorithm models were applied to classify groups and significant accuracy rates were achieved. The accuracy of our 3-layer artificial neural network architecture was also compared with classical machine learning algorithms. This study highlights the potential of noninvasive voice analysis combined with machine learning for early detection and monitoring of PD patients. Future research can improve diagnostic accuracy by optimizing feature selection and exploring advanced classification techniques.
Abstract:The design and performance analysis of relay lenses that provide high-performance image transmission for target acquisition and tracking in military optical systems. Relay lenses are critical components for clear and lossless image transmission over long distances. In this study, the optical performance of a relay lens system designed and optimized using ZEMAX software is investigated in detail. The analysis focuses on important optical properties such as modulation transfer function (MTF), spot diagrams, Seidel diagram, field curvature and distortion. The results show that the lens has significant potential in military applications for target detection and tracking with high resolution and low aberration.