Abstract:Personalized learning systems have emerged as a promising approach to enhance student outcomes by tailoring educational content, pacing, and feedback to individual needs. However, most existing systems remain fragmented, specializing in either knowledge tracing, diagnostic modeling, or resource recommendation, but rarely integrating these components into a cohesive adaptive cycle. In this paper, we propose ALIGNAgent (Adaptive Learner Intelligence for Gap Identification and Next-step guidance), a multi-agent educational framework designed to deliver personalized learning through integrated knowledge estimation, skill-gap identification, and targeted resource recommendation.ALIGNAgent begins by processing student quiz performance, gradebook data, and learner preferences to generate topic-level proficiency estimates using a Skill Gap Agent that employs concept-level diagnostic reasoning to identify specific misconceptions and knowledge deficiencies. After identifying skill gaps, the Recommender Agent retrieves preference-aware learning materials aligned with diagnosed deficiencies, implementing a continuous feedback loop where interventions occur before advancing to subsequent topics. Extensive empirical evaluation on authentic datasets from two undergraduate computer science courses demonstrates ALIGNAgent's effectiveness, with GPT-4o-based agents achieving precision of 0.87-0.90 and F1 scores of 0.84-0.87 in knowledge proficiency estimation validated against actual exam performance.




Abstract:Attacks on computer networks have increased significantly in recent days, due in part to the availability of sophisticated tools for launching such attacks as well as thriving underground cyber-crime economy to support it. Over the past several years, researchers in academia and industry used machine learning (ML) techniques to design and implement Intrusion Detection Systems (IDSes) for computer networks. Many of these researchers used datasets collected by various organizations to train ML models for predicting intrusions. In many of the datasets used in such systems, data are imbalanced (i.e., not all classes have equal amount of samples). With unbalanced data, the predictive models developed using ML algorithms may produce unsatisfactory classifiers which would affect accuracy in predicting intrusions. Traditionally, researchers used over-sampling and under-sampling for balancing data in datasets to overcome this problem. In this work, in addition to over-sampling, we also use a synthetic data generation method, called Conditional Generative Adversarial Network (CTGAN), to balance data and study their effect on various ML classifiers. To the best of our knowledge, no one else has used CTGAN to generate synthetic samples to balance intrusion detection datasets. Based on extensive experiments using a widely used dataset NSL-KDD, we found that training ML models on dataset balanced with synthetic samples generated by CTGAN increased prediction accuracy by up to $8\%$, compared to training the same ML models over unbalanced data. Our experiments also show that the accuracy of some ML models trained over data balanced with random over-sampling decline compared to the same ML models trained over unbalanced data.