Abstract:Learning-to-Defer (L2D) enables decision-making systems to improve reliability by selectively deferring uncertain predictions to more competent agents. However, most existing approaches focus exclusively on single-agent deferral, which is often inadequate in high-stakes scenarios that require collective expertise. We propose Top-$k$ Learning-to-Defer, a generalization of the classical two-stage L2D framework that allocates each query to the $k$ most confident agents instead of a single one. To further enhance flexibility and cost-efficiency, we introduce Top-$k(x)$ Learning-to-Defer, an adaptive extension that learns the optimal number of agents to consult for each query, based on input complexity, agent competency distributions, and consultation costs. For both settings, we derive a novel surrogate loss and prove that it is Bayes-consistent and $(\mathcal{R}, \mathcal{G})$-consistent, ensuring convergence to the Bayes-optimal allocation. Notably, we show that the well-established model cascades paradigm arises as a restricted instance of our Top-$k$ and Top-$k(x)$ formulations. Extensive experiments across diverse benchmarks demonstrate the effectiveness of our framework on both classification and regression tasks.
Abstract:Learning-to-Defer (L2D) facilitates optimal task allocation between AI systems and decision-makers. Despite its potential, we show that current two-stage L2D frameworks are highly vulnerable to adversarial attacks, which can misdirect queries or overwhelm decision agents, significantly degrading system performance. This paper conducts the first comprehensive analysis of adversarial robustness in two-stage L2D frameworks. We introduce two novel attack strategies -- untargeted and targeted -- that exploit inherent structural vulnerabilities in these systems. To mitigate these threats, we propose SARD, a robust, convex, deferral algorithm rooted in Bayes and $(\mathcal{R},\mathcal{G})$-consistency. Our approach guarantees optimal task allocation under adversarial perturbations for all surrogates in the cross-entropy family. Extensive experiments on classification, regression, and multi-task benchmarks validate the robustness of SARD.
Abstract:We propose a novel Active Learning framework capable to train effectively a convolutional neural network for semantic segmentation of medical imaging, with a limited amount of training labeled data. Our contribution is a practical Cost-Effective Active Learning approach using dropout at test time as Monte Carlo sampling to model the pixel-wise uncertainty and to analyze the image information to improve the training performance. The source code of this project is available at https://marc-gorriz.github.io/CEAL-Medical-Image-Segmentation/ .
Abstract:This paper explores processing techniques to deal with noisy data in crowdsourced object segmentation tasks. We use the data collected with "Click'n'Cut", an online interactive segmentation tool, and we perform several experiments towards improving the segmentation results. First, we introduce different superpixel-based techniques to filter users' traces, and assess their impact on the segmentation result. Second, we present different criteria to detect and discard the traces from potential bad users, resulting in a remarkable increase in performance. Finally, we show a novel superpixel-based segmentation algorithm which does not require any prior filtering and is based on weighting each user's contribution according to his/her level of expertise.