Abstract:Model developers implement safeguards in frontier models to prevent misuse, for example, by employing classifiers to filter dangerous outputs. In this work, we demonstrate that even robustly safeguarded models can be used to elicit harmful capabilities in open-source models through elicitation attacks. Our elicitation attacks consist of three stages: (i) constructing prompts in adjacent domains to a target harmful task that do not request dangerous information; (ii) obtaining responses to these prompts from safeguarded frontier models; (iii) fine-tuning open-source models on these prompt-output pairs. Since the requested prompts cannot be used to directly cause harm, they are not refused by frontier model safeguards. We evaluate these elicitation attacks within the domain of hazardous chemical synthesis and processing, and demonstrate that our attacks recover approximately 40% of the capability gap between the base open-source model and an unrestricted frontier model. We then show that the efficacy of elicitation attacks scales with the capability of the frontier model and the amount of generated fine-tuning data. Our work demonstrates the challenge of mitigating ecosystem level risks with output-level safeguards.




Abstract:Mechanistic interpretability aims to understand the behavior of neural networks by reverse-engineering their internal computations. However, current methods struggle to find clear interpretations of neural network activations because a decomposition of activations into computational features is missing. Individual neurons or model components do not cleanly correspond to distinct features or functions. We present a novel interpretability method that aims to overcome this limitation by transforming the activations of the network into a new basis - the Local Interaction Basis (LIB). LIB aims to identify computational features by removing irrelevant activations and interactions. Our method drops irrelevant activation directions and aligns the basis with the singular vectors of the Jacobian matrix between adjacent layers. It also scales features based on their importance for downstream computation, producing an interaction graph that shows all computationally-relevant features and interactions in a model. We evaluate the effectiveness of LIB on modular addition and CIFAR-10 models, finding that it identifies more computationally-relevant features that interact more sparsely, compared to principal component analysis. However, LIB does not yield substantial improvements in interpretability or interaction sparsity when applied to language models. We conclude that LIB is a promising theory-driven approach for analyzing neural networks, but in its current form is not applicable to large language models.