Abstract:Marine biodiversity monitoring requires scalability and reliability across complex underwater environments to support conservation and invasive-species management. Yet existing detection solutions often exhibit a pronounced deployment gap, with performance degrading sharply when transferred to new sites. This work establishes the foundational detection layer for a multi-year invasive species monitoring initiative targeting Arctic and Atlantic marine ecosystems. We address this challenge by developing a Unified Information Pipeline that standardises heterogeneous datasets into a comparable information flow and evaluates a fixed, deployment-relevant detector under controlled cross-domain protocols. Across multiple domains, we find that structural factors, such as scene composition, object density, and contextual redundancy, explain cross-domain performance loss more strongly than visual degradation such as turbidity, with sparse scenes inducing a characteristic "Context Collapse" failure mode. We further validate operational feasibility by benchmarking inference on low-cost edge hardware, showing that runtime optimisation enables practical sampling rates for remote monitoring. The results shift emphasis from image enhancement toward structure-aware reliability, providing a democratised tool for consistent marine ecosystem assessment.