Abstract:Recent foundation models for tabular data achieve strong task-specific performance via in-context learning. Nevertheless, they focus on direct prediction by encapsulating both representation learning and task-specific inference inside a single, resource-intensive network. This work specifically focuses on representation learning, i.e., on transferable, task-agnostic embeddings. We systematically evaluate task-agnostic representations from tabular foundation models (TabPFN and TabICL) alongside with classical feature engineering (TableVectorizer) across a variety of application tasks as outlier detection (ADBench) and supervised learning (TabArena Lite). We find that simple TableVectorizer features achieve comparable or superior performance while being up to three orders of magnitude faster than tabular foundation models. The code is available at https://github.com/ContactSoftwareAI/TabEmbedBench.




Abstract:Automated extraction and labeling of rib centerlines is a typically needed prerequisite for more advanced assisted reading tools that help the radiologist to efficiently inspect all 24 ribs in a CT volume. In this paper, we combine a deep learning-based rib detection with a dedicated centerline extraction algorithm applied to the detection result for the purpose of fast, robust and accurate rib centerline extraction and labeling from CT volumes. More specifically, we first apply a fully convolutional neural network (FCNN) to generate a probability map for detecting the first rib pair, the twelfth rib pair, and the collection of all intermediate ribs. In a second stage, a newly designed centerline extraction algorithm is applied to this multi-label probability map. Finally, the distinct detection of first and twelfth rib separately, allows to derive individual rib labels by simple sorting and counting the detected centerlines. We applied our method to CT volumes from 116 patients which included a variety of different challenges and achieved a centerline accuracy of 0.787 mm with respect to manual centerline annotations.