Abstract:Algorithmic trading or Financial robots have been conquering the stock markets with their ability to fathom complex statistical trading strategies. But with the recent development of deep learning technologies, these strategies are becoming impotent. The DQN and A2C models have previously outperformed eminent humans in game-playing and robotics. In our work, we propose a reinforced portfolio manager offering assistance in the allocation of weights to assets. The environment proffers the manager the freedom to go long and even short on the assets. The weight allocation advisements are restricted to the choice of portfolio assets and tested empirically to knock benchmark indices. The manager performs financial transactions in a postulated liquid market without any transaction charges. This work provides the conclusion that the proposed portfolio manager with actions centered on weight allocations can surpass the risk-adjusted returns of conventional portfolio managers.




Abstract:Bayesian Optimization is an effective method for searching the global maxima of an objective function especially if the function is unknown. The process comprises of using a surrogate function and choosing an acquisition function followed by optimizing the acquisition function to find the next sampling point. This paper analyzes different acquistion functions like Maximum Probability of Improvement and Expected Improvement and various optimizers like L-BFGS and TNC to optimize the acquisitions functions for finding the next sampling point. Along with the analysis of time taken, the paper also shows the importance of position of initial samples chosen.