Abstract:We propose a flexible deep neural network (DNN) framework for modeling survival data within a partially linear regression structure. The approach preserves interpretability through a parametric linear component for covariates of primary interest, while a nonparametric DNN component captures complex time-covariate interactions among nuisance variables. We refer to the method as FLEXI-Haz, a flexible hazard model with a partially linear structure. In contrast to existing DNN approaches for partially linear Cox models, FLEXI-Haz does not rely on the proportional hazards assumption. We establish theoretical guarantees: the neural network component attains minimax-optimal convergence rates based on composite Holder classes, and the linear estimator is root-n consistent, asymptotically normal, and semiparametrically efficient. Extensive simulations and real-data analyses demonstrate that FLEXI-Haz provides accurate estimation of the linear effect, offering a principled and interpretable alternative to modern methods based on proportional hazards. Code for implementing FLEXI-Haz, as well as scripts for reproducing data analyses and simulations, is available at: https://github.com/AsafBanana/FLEXI-Haz
Abstract:Deep learning models have significantly improved prediction accuracy in various fields, gaining recognition across numerous disciplines. Yet, an aspect of deep learning that remains insufficiently addressed is the assessment of prediction uncertainty. Producing reliable uncertainty estimators could be crucial in practical terms. For instance, predictions associated with a high degree of uncertainty could be sent for further evaluation. Recent works in uncertainty quantification of deep learning predictions, including Bayesian posterior credible intervals and a frequentist confidence-interval estimation, have proven to yield either invalid or overly conservative intervals. Furthermore, there is currently no method for quantifying uncertainty that can accommodate deep neural networks for survival (time-to-event) data that involves right-censored outcomes. In this work, we provide a valid non-parametric bootstrap method that correctly disentangles data uncertainty from the noise inherent in the adopted optimization algorithm, ensuring that the resulting point-wise confidence intervals or the simultaneous confidence bands are accurate (i.e., valid and not overly conservative). The proposed ad-hoc method can be easily integrated into any deep neural network without interfering with the training process. The utility of the proposed approach is illustrated by constructing simultaneous confidence bands for survival curves derived from deep neural networks for survival data with right censoring.