Abstract:In recent years, instructional practices in Operations Research (OR), Management Science (MS), and Analytics have increasingly shifted toward digital environments, where large and diverse groups of learners make it difficult to provide practice that adapts to individual needs. This paper introduces a method that generates personalized sequences of exercises by selecting, at each step, the exercise most likely to advance a learner's understanding of a targeted skill. The method uses information about the learner and their past performance to guide these choices, and learning progress is measured as the change in estimated skill level before and after each exercise. Using data from an online mathematics tutoring platform, we find that the approach recommends exercises associated with greater skill improvement and adapts effectively to differences across learners. From an instructional perspective, the framework enables personalized practice at scale, highlights exercises with consistently strong learning value, and helps instructors identify learners who may benefit from additional support.
Abstract:In recent years, there has been a surge in research on Question Difficulty Estimation (QDE) using natural language processing techniques. Transformer-based neural networks achieve state-of-the-art performance, primarily through supervised methods but with an isolated study in unsupervised learning. While supervised methods focus on predictive performance, they require abundant labeled data. On the other hand, unsupervised methods do not require labeled data but rely on a different evaluation metric that is also computationally expensive in practice. This work bridges the research gap by exploring active learning for QDE, a supervised human-in-the-loop approach striving to minimize the labeling efforts while matching the performance of state-of-the-art models. The active learning process iteratively trains on a labeled subset, acquiring labels from human experts only for the most informative unlabeled data points. Furthermore, we propose a novel acquisition function PowerVariance to add the most informative samples to the labeled set, a regression extension to the PowerBALD function popular in classification. We employ DistilBERT for QDE and identify informative samples by applying Monte Carlo dropout to capture epistemic uncertainty in unlabeled samples. The experiments demonstrate that active learning with PowerVariance acquisition achieves a performance close to fully supervised models after labeling only 10% of the training data. The proposed methodology promotes the responsible use of educational resources, makes QDE tools more accessible to course instructors, and is promising for other applications such as personalized support systems and question-answering tools.
Abstract:In operations research (OR), predictive models often encounter out-of-distribution (OOD) scenarios where the data distribution differs from the training data distribution. In recent years, neural networks (NNs) are gaining traction in OR for their exceptional performance in fields such as image classification. However, NNs tend to make confident yet incorrect predictions when confronted with OOD data. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Hence, reliable uncertainty quantification in NNs is crucial in the OR domain. Deep ensembles, composed of multiple independent NNs, have emerged as a promising approach, offering not only strong predictive accuracy but also reliable uncertainty estimation. However, their deployment is challenging due to substantial computational demands. Recent fundamental research has proposed more efficient NN ensembles, namely the snapshot, batch, and multi-input multi-output ensemble. This study is the first to provide a comprehensive comparison of a single NN, a deep ensemble, and the three efficient NN ensembles. In addition, we propose a Diversity Quality metric to quantify the ensembles' performance on the in-distribution and OOD sets in one single metric. The OR case study discusses industrial parts classification to identify and manage spare parts, important for timely maintenance of industrial plants. The results highlight the batch ensemble as a cost-effective and competitive alternative to the deep ensemble. It outperforms the deep ensemble in both uncertainty and accuracy while exhibiting a training time speedup of 7x, a test time speedup of 8x, and 9x memory savings.
Abstract:Uncertainty is a key feature of any machine learning model and is particularly important in neural networks, which tend to be overconfident. This overconfidence is worrying under distribution shifts, where the model performance silently degrades as the data distribution diverges from the training data distribution. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Although methods for uncertainty estimation have been developed, they have not been explicitly linked to the field of explainable artificial intelligence (XAI). Furthermore, literature in operations research ignores the actionability component of uncertainty estimation and does not consider distribution shifts. This work proposes a general uncertainty framework, with contributions being threefold: (i) uncertainty estimation in ML models is positioned as an XAI technique, giving local and model-specific explanations; (ii) classification with rejection is used to reduce misclassifications by bringing a human expert in the loop for uncertain observations; (iii) the framework is applied to a case study on neural networks in educational data mining subject to distribution shifts. Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks, giving rise to more actionable and robust machine learning systems in operations research.