Abstract:Online sexism increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to better regularize supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. First, we stabilize the training combining class-balanced focal loss, class-aware batching, and post-hoc threshold calibration, strategies for the firs time adapted for this domain to mitigate label imbalance and noisy supervision. Second, we bridge the gap between efficiency and reasoning with a a dynamic routing mechanism that distinguishes between unambiguous instances and complex cases requiring a deliberative process. This reasoning process results in the novel Collaborative Expert Judgment (CEJ) module which prompts multiple personas and consolidates their reasoning through a judge model. Our approach outperforms existing approaches across several public benchmarks, with F1 gains of +4.48% and +1.30% on EDOS Tasks A and B, respectively, and a +2.79% improvement in ICM on EXIST 2025 Task 1.1.
Abstract:Sexist content online increasingly appears in subtle, context-dependent forms that evade traditional detection methods. Its interpretation often depends on overlapping linguistic, psychological, legal, and cultural dimensions, which produce mixed and sometimes contradictory signals, even in annotated datasets. These inconsistencies, combined with label scarcity and class imbalance, result in unstable decision boundaries and cause fine-tuned models to overlook subtler, underrepresented forms of harm. Together, these limitations point to the need for a design that explicitly addresses the combined effects of (i) underrepresentation, (ii) noise, and (iii) conceptual ambiguity in both data and model predictions. To address these challenges, we propose a two-stage framework that unifies (i) targeted training procedures to adapt supervision to scarce and noisy data with (ii) selective, reasoning-based inference to handle ambiguous or borderline cases. Our training setup applies class-balanced focal loss, class-aware batching, and post-hoc threshold calibration to mitigate label imbalance and noisy supervision. At inference time, a dynamic routing mechanism classifies high-confidence cases directly and escalates uncertain instances to a novel \textit{Collaborative Expert Judgment} (CEJ) module, which prompts multiple personas and consolidates their reasoning through a judge model. Our approach achieves state-of-the-art results across several benchmarks, with a +2.72\% improvement in F1 on the EXIST 2025 Task 1.1, and a gains of +4.48\% and +1.30\% on the EDOS Tasks A and B, respectively.