Abstract:The classification of clinical notes into specific diagnostic categories is critical in healthcare, especially for mental health conditions like Anxiety and Adjustment Disorder. In this study, we compare the performance of various Artificial Intelligence models, including both traditional Machine Learning approaches (Random Forest, Support Vector Machine, K-nearest neighbors, Decision Tree, and eXtreme Gradient Boost) and Deep Learning models (DistilBERT and SciBERT), to classify clinical notes into these two diagnoses. Additionally, we implemented three oversampling strategies: No Oversampling, Random Oversampling, and Synthetic Minority Oversampling Technique (SMOTE), to assess their impact on model performance. Hyperparameter tuning was also applied to optimize model accuracy. Our results indicate that oversampling techniques had minimal impact on model performance overall. The only exception was SMOTE, which showed a positive effect specifically with BERT-based models. However, hyperparameter optimization significantly improved accuracy across the models, enhancing their ability to generalize and perform on the dataset. The Decision Tree and eXtreme Gradient Boost models achieved the highest accuracy among machine learning approaches, both reaching 96%, while the DistilBERT and SciBERT models also attained 96% accuracy in the deep learning category. These findings underscore the importance of hyperparameter tuning in maximizing model performance. This study contributes to the ongoing research on AI-assisted diagnostic tools in mental health by providing insights into the efficacy of different model architectures and data balancing methods.
Abstract:Objectives: Metabolic Bariatric Surgery (MBS) is a critical intervention for patients living with obesity and related health issues. Accurate classification and prediction of patient outcomes are vital for optimizing treatment strategies. This study presents a novel machine learning approach to classify patients in the context of metabolic bariatric surgery, providing insights into the efficacy of different models and variable types. Methods: Various machine learning models, including GaussianNB, ComplementNB, KNN, Decision Tree, KNN with RandomOverSampler, and KNN with SMOTE, were applied to a dataset of 73 patients. The dataset, comprising psychometric, socioeconomic, and analytical variables, was analyzed to determine the most efficient predictive model. The study also explored the impact of different variable groupings and oversampling techniques. Results: Experimental results indicate average accuracy values as high as 66.7% for the best model. Enhanced versions of KNN and Decision Tree, along with variations of KNN such as RandomOverSampler and SMOTE, yielded the best results. Conclusions: The study unveils a promising avenue for classifying patients in the realm of metabolic bariatric surgery. The results underscore the importance of selecting appropriate variables and employing diverse approaches to achieve optimal performance. The developed system holds potential as a tool to assist healthcare professionals in decision-making, thereby enhancing metabolic bariatric surgery outcomes. These findings lay the groundwork for future collaboration between hospitals and healthcare entities to improve patient care through the utilization of machine learning algorithms. Moreover, the findings suggest room for improvement, potentially achievable with a larger dataset and careful parameter tuning.