Abstract:Gossip Learning (GL) is a decentralized learning paradigm where users iteratively exchange and aggregate models with a small set of neighboring peers. Recent GL approaches rely on dynamic communication graphs built and maintained using Random Peer Sampling (RPS) protocols. Thanks to graph dynamics, GL can achieve fast convergence even over extremely sparse topologies. However, the robustness of GL over dy- namic graphs to Byzantine (model poisoning) attacks remains unaddressed especially when Byzantine nodes attack the RPS protocol to scale up model poisoning. We address this issue by introducing GRANITE, a framework for robust learning over sparse, dynamic graphs in the presence of a fraction of Byzantine nodes. GRANITE relies on two key components (i) a History-aware Byzantine-resilient Peer Sampling protocol (HaPS), which tracks previously encountered identifiers to reduce adversarial influence over time, and (ii) an Adaptive Probabilistic Threshold (APT), which leverages an estimate of Byzantine presence to set aggregation thresholds with formal guarantees. Empirical results confirm that GRANITE maintains convergence with up to 30% Byzantine nodes, improves learning speed via adaptive filtering of poisoned models and obtains these results in up to 9 times sparser graphs than dictated by current theory.
Abstract:Collaborative-learning based recommender systems emerged following the success of collaborative learning techniques such as Federated Learning (FL) and Gossip Learning (GL). In these systems, users participate in the training of a recommender system while keeping their history of consumed items on their devices. While these solutions seemed appealing for preserving the privacy of the participants at a first glance, recent studies have shown that collaborative learning can be vulnerable to a variety of privacy attacks. In this paper we propose a novel privacy attack called Community Detection Attack (CDA), which allows an adversary to discover the members of a community based on a set of items of her choice (e.g., discovering users interested in LGBT content). Through experiments on three real recommendation datasets and by using two state-of-the-art recommendation models, we assess the sensitivity of an FL-based recommender system as well as two flavors of Gossip Learning-based recommender systems to CDA. Results show that on all models and all datasets, the FL setting is more vulnerable to CDA than Gossip settings. We further evaluated two off-the-shelf mitigation strategies, namely differential privacy (DP) and a share less policy, which consists in sharing a subset of model parameters. Results show a better privacy-utility trade-off for the share less policy compared to DP especially in the Gossip setting.