Abstract:Large language models (LLMs) have shown promise in medical question answering, yet they often overlook the domain-specific expertise that professionals depend on, such as the clinical subject areas (e.g., trauma, airway) and the certification level (e.g., EMT, Paramedic). Existing approaches typically apply general-purpose prompting or retrieval strategies without leveraging this structured context, limiting performance in high-stakes settings. We address this gap with EMSQA, an 24.3K-question multiple-choice dataset spanning 10 clinical subject areas and 4 certification levels, accompanied by curated, subject area-aligned knowledge bases (40K documents and 2M tokens). Building on EMSQA, we introduce (i) Expert-CoT, a prompting strategy that conditions chain-of-thought (CoT) reasoning on specific clinical subject area and certification level, and (ii) ExpertRAG, a retrieval-augmented generation pipeline that grounds responses in subject area-aligned documents and real-world patient data. Experiments on 4 LLMs show that Expert-CoT improves up to 2.05% over vanilla CoT prompting. Additionally, combining Expert-CoT with ExpertRAG yields up to a 4.59% accuracy gain over standard RAG baselines. Notably, the 32B expertise-augmented LLMs pass all the computer-adaptive EMS certification simulation exams.
Abstract:Emergency Medical Services (EMS) are critical to patient survival in emergencies, but first responders often face intense cognitive demands in high-stakes situations. AI cognitive assistants, acting as virtual partners, have the potential to ease this burden by supporting real-time data collection and decision making. In pursuit of this vision, we introduce EgoEMS, the first end-to-end, high-fidelity, multimodal, multiperson dataset capturing over 20 hours of realistic, procedural EMS activities from an egocentric view in 233 simulated emergency scenarios performed by 62 participants, including 46 EMS professionals. Developed in collaboration with EMS experts and aligned with national standards, EgoEMS is captured using an open-source, low-cost, and replicable data collection system and is annotated with keysteps, timestamped audio transcripts with speaker diarization, action quality metrics, and bounding boxes with segmentation masks. Emphasizing realism, the dataset includes responder-patient interactions reflecting real-world emergency dynamics. We also present a suite of benchmarks for real-time multimodal keystep recognition and action quality estimation, essential for developing AI support tools for EMS. We hope EgoEMS inspires the research community to push the boundaries of intelligent EMS systems and ultimately contribute to improved patient outcomes.