Abstract:Lung cancer is a leading cause of cancer-related deaths globally, where early detection and accurate diagnosis are critical for improving survival rates. While deep learning, particularly convolutional neural networks (CNNs), has revolutionized medical image analysis by detecting subtle patterns indicative of early-stage lung cancer, its adoption faces challenges. These models are often computationally expensive and require significant resources, making them unsuitable for resource constrained environments. Additionally, their lack of transparency hinders trust and broader adoption in sensitive fields like healthcare. Knowledge distillation addresses these challenges by transferring knowledge from large, complex models (teachers) to smaller, lightweight models (students). We propose a knowledge distillation-based approach for lung cancer detection, incorporating explainable AI (XAI) techniques to enhance model transparency. Eight CNNs, including ResNet50, EfficientNetB0, EfficientNetB3, and VGG16, are evaluated as teacher models. We developed and trained a lightweight student model, Distilled Custom Student Network (DCSNet) using ResNet50 as the teacher. This approach not only ensures high diagnostic performance in resource-constrained settings but also addresses transparency concerns, facilitating the adoption of AI-driven diagnostic tools in healthcare.
Abstract:Texting stands out as the most prominent form of communication worldwide. Individual spend significant amount of time writing whole texts to send emails or write something on social media, which is time consuming in this modern era. Word prediction and sentence completion will be suitable and appropriate in the Bangla language to make textual information easier and more convenient. This paper expands the scope of Bangla language processing by introducing a Bi-LSTM model that effectively handles Bangla next-word prediction and Bangla sentence generation, demonstrating its versatility and potential impact. We proposed a new Bi-LSTM model to predict a following word and complete a sentence. We constructed a corpus dataset from various news portals, including bdnews24, BBC News Bangla, and Prothom Alo. The proposed approach achieved superior results in word prediction, reaching 99\% accuracy for both 4-gram and 5-gram word predictions. Moreover, it demonstrated significant improvement over existing methods, achieving 35\%, 75\%, and 95\% accuracy for uni-gram, bi-gram, and tri-gram word prediction, respectively