Abstract:Graphs are central to modeling complex systems in domains such as social networks, molecular chemistry, and neuroscience. While Graph Neural Networks, particularly Graph Convolutional Networks, have become standard tools for graph learning, they remain constrained by reliance on fixed structures and susceptibility to over-smoothing. We propose the Spectral Preservation Network, a new framework for graph representation learning that generates reduced graphs serving as faithful proxies of the original, enabling downstream tasks such as community detection, influence propagation, and information diffusion at a reduced computational cost. The Spectral Preservation Network introduces two key components: the Joint Graph Evolution layer and the Spectral Concordance loss. The former jointly transforms both the graph topology and the node feature matrix, allowing the structure and attributes to evolve adaptively across layers and overcoming the rigidity of static neighborhood aggregation. The latter regularizes these transformations by enforcing consistency in both the spectral properties of the graph and the feature vectors of the nodes. We evaluate the effectiveness of Spectral Preservation Network on node-level sparsification by analyzing well-established metrics and benchmarking against state-of-the-art methods. The experimental results demonstrate the superior performance and clear advantages of our approach.




Abstract:To achieve accurate and unbiased predictions, Machine Learning (ML) models rely on large, heterogeneous, and high-quality datasets. However, this could raise ethical and legal concerns regarding copyright and authorization aspects, especially when information is gathered from the Internet. With the rise of generative models, being able to track data has become of particular importance, especially since they may (un)intentionally replicate copyrighted contents. Therefore, this work proposes Copyright Audit via Prompts generation (CAP), a framework for automatically testing whether an ML model has been trained with unauthorized data. Specifically, we devise an approach to generate suitable keys inducing the model to reveal copyrighted contents. To prove its effectiveness, we conducted an extensive evaluation campaign on measurements collected in four IoT scenarios. The obtained results showcase the effectiveness of CAP, when used against both realistic and synthetic datasets.




Abstract:In real-world scenario, many phenomena produce a collection of events that occur in continuous time. Point Processes provide a natural mathematical framework for modeling these sequences of events. In this survey, we investigate probabilistic models for modeling event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that characterize the literature on the topic. We define an ontology to categorize the existing approaches in terms of three families: simple, marked, and spatio-temporal point processes. For each family, we systematically review the existing approaches based based on deep learning. Finally, we analyze the scenarios where the proposed techniques can be used for addressing prediction and modeling aspects.