Abstract:SocialCredit+ is AI powered credit scoring system that leverages publicly available social media data to augment traditional credit evaluation. It uses a conversational banking assistant to gather user consent and fetch public profiles. Multimodal feature extractors analyze posts, bios, images, and friend networks to generate a rich behavioral profile. A specialized Sharia-compliance layer flags any non-halal indicators and prohibited financial behavior based on Islamic ethics. The platform employs a retrieval-augmented generation module: an LLM accesses a domain specific knowledge base to generate clear, text-based explanations for each decision. We describe the end-to-end architecture and data flow, the models used, and system infrastructure. Synthetic scenarios illustrate how social signals translate into credit-score factors. This paper emphasizes conceptual novelty, compliance mechanisms, and practical impact, targeting AI researchers, fintech practitioners, ethical banking jurists, and investors.
Abstract:Large Language Models are designed to understand complex Human Language. Yet, Understanding of animal language has long intrigued researchers striving to bridge the communication gap between humans and other species. This research paper introduces a novel approach that draws inspiration from the linguistic concepts found in the Quran, a revealed Holy Arabic scripture dating back 1400 years. By exploring the linguistic structure of the Quran, specifically the components of ism, fil, and harf, we aim to unlock the underlying intentions and meanings embedded within animal conversations using audio data. To unravel the intricate complexities of animal language, we employ word embedding techniques to analyze each distinct frequency component. This methodology enables the identification of potential correlations and the extraction of meaningful insights from the data. Furthermore, we leverage a bioacoustics model to generate audio, which serves as a valuable resource for training natural language processing (NLP) techniques. This Paper aims to find the intention* behind animal language rather than having each word translation.