Abstract:Artificial Intelligence has advanced significantly in recent years thanks to innovations in the design and training of artificial neural networks (ANNs). Despite these advancements, we still understand relatively little about how elementary forms of ANNs learn, fail to learn, and generate false information without the intent to deceive, a phenomenon known as `confabulation'. To provide some foundational insight, in this paper we analyse how confabulation occurs in reservoir computers (RCs): a dynamical system in the form of an ANN. RCs are particularly useful to study as they are known to confabulate in a well-defined way: when RCs are trained to reconstruct the dynamics of a given attractor, they sometimes construct an attractor that they were not trained to construct, a so-called `untrained attractor' (UA). This paper sheds light on the role played by UAs when reconstruction fails and their influence when modelling transitions between reconstructed attractors. Based on our results, we conclude that UAs are an intrinsic feature of learning systems whose state spaces are bounded, and that this means of confabulation may be present in systems beyond RCs.
Abstract:Network topology identification (TI) is an essential function for distributed energy resources management systems (DERMS) to organize and operate widespread distributed energy resources (DERs). In this paper, discriminant analysis (DA) is deployed to develop a network TI function that relies only on the measurements available to DERMS. The propounded method is able to identify the network switching configuration, as well as the status of protective devices. Following, to improve the TI resiliency against the interruption of communication channels, a quadratic programming optimization approach is proposed to recover the missing signals. By deploying the propounded data recovery approach and Bayes' theorem together, a benchmark is developed afterward to identify anomalous measurements. This benchmark can make the TI function resilient against cyber-attacks. Having a low computational burden, this approach is fast-track and can be applied in real-time applications. Sensitivity analysis is performed to assess the contribution of different measurements and the impact of the system load type and loading level on the performance of the proposed approach.