Abstract:Modern chess engines achieve superhuman performance through deep tree search and regressive evaluation, while human players rely on intuition to select candidate moves followed by a shallow search to validate them. To model this intuition-driven planning process, we train a transformer encoder using supervised contrastive learning to embed board states into a latent space structured by positional evaluation. In this space, distance reflects evaluative similarity, and visualized trajectories display interpretable transitions between game states. We demonstrate that move selection can occur entirely within this embedding space by advancing toward favorable regions, without relying on deep search. Despite using only a 6-ply beam search, our model achieves an estimated Elo rating of 2593. Performance improves with both model size and embedding dimensionality, suggesting that latent planning may offer a viable alternative to traditional search. Although we focus on chess, the proposed embedding-based planning method can be generalized to other perfect-information games where state evaluations are learnable. All source code is available at https://github.com/andrewhamara/SOLIS.
Abstract:Recently, we have witnessed the rise of novel ``event-based'' camera sensors for high-speed, low-power video capture. Rather than recording discrete image frames, these sensors output asynchronous ``event'' tuples with microsecond precision, only when the brightness change of a given pixel exceeds a certain threshold. Although these sensors have enabled compelling new computer vision applications, these applications often require expensive, power-hungry GPU systems, rendering them incompatible for deployment on the low-power devices for which event cameras are optimized. Whereas receiver-driven rate adaptation is a crucial feature of modern video streaming solutions, this topic is underexplored in the realm of event-based vision systems. On a real-world event camera dataset, we first demonstrate that a state-of-the-art object detection application is resilient to dramatic data loss, and that this loss may be weighted towards the end of each temporal window. We then propose a scalable streaming method for event-based data based on Media Over QUIC, prioritizing object detection performance and low latency. The application server can receive complementary event data across several streams simultaneously, and drop streams as needed to maintain a certain latency. With a latency target of 5 ms for end-to-end transmission across a small network, we observe an average reduction in detection mAP as low as 0.36. With a more relaxed latency target of 50 ms, we observe an average mAP reduction as low as 0.19.