Abstract:Autonomous navigation in complex and partially observable environments remains a central challenge in robotics. Several bio-inspired models of mapping and navigation based on place cells in the mammalian hippocampus have been proposed. This paper introduces a new robust model that employs parallel layers of place fields at multiple spatial scales, a replay-based reward mechanism, and dynamic scale fusion. Simulations show that the model improves path efficiency and accelerates learning compared to single-scale baselines, highlighting the value of multiscale spatial representations for adaptive robot navigation.
Abstract:This paper explores the application of CNN-DNN network fusion to construct a robot navigation controller within a simulated environment. The simulated environment is constructed to model a subterranean rescue situation, such that an autonomous agent is tasked with finding a goal within an unknown cavernous system. Imitation learning is used to train the control algorithm to use LiDAR and camera data to navigate the space and find the goal. The trained model is then tested for robustness using Monte-Carlo.