Abstract:The increasing size and complexity of machine learning (ML) models have driven the growing need for custom hardware accelerators capable of efficiently supporting ML workloads. However, the design of such accelerators remains a time-consuming process, heavily relying on engineers to manually ensure design interpretability through clear documentation and effective communication. Recent advances in large language models (LLMs) offer a promising opportunity to automate these design interpretability tasks, particularly the generation of natural language descriptions for register-transfer level (RTL) code, what we refer to as "RTL-to-NL tasks." In this paper, we examine how design interpretability, particularly in RTL-to-NL tasks, influences the efficiency of the hardware design process. We review existing work adapting LLMs for these tasks, highlight key challenges that remain unaddressed, including those related to data, computation, and model development, and identify opportunities to address them. By doing so, we aim to guide future research in leveraging ML to automate RTL-to-NL tasks and improve hardware design interpretability, thereby accelerating the hardware design process and meeting the increasing demand for custom hardware accelerators in machine learning and beyond.
Abstract:Tensors play a vital role in machine learning (ML) and often exhibit properties best explored while maintaining high-order. Efficiently performing ML computations requires taking advantage of sparsity, but generalized hardware support is challenging. This paper introduces FLAASH, a flexible and modular accelerator design for sparse tensor contraction that achieves over 25x speedup for a deep learning workload. Our architecture performs sparse high-order tensor contraction by distributing sparse dot products, or portions thereof, to numerous Sparse Dot Product Engines (SDPEs). Memory structure and job distribution can be customized, and we demonstrate a simple approach as a proof of concept. We address the challenges associated with control flow to navigate data structures, high-order representation, and high-sparsity handling. The effectiveness of our approach is demonstrated through various evaluations, showcasing significant speedup as sparsity and order increase.