TH Köln - University of Applied Sciences
Abstract:Simulations in information access (IA) have recently gained interest, as shown by various tutorials and workshops around that topic. Simulations can be key contributors to central IA research and evaluation questions, especially around interactive settings when real users are unavailable, or their participation is impossible due to ethical reasons. In addition, simulations in IA can help contribute to a better understanding of users, reduce complexity of evaluation experiments, and improve reproducibility. Building on recent developments in methods and toolkits, the second iteration of our Sim4IA workshop aims to again bring together researchers and practitioners to form an interactive and engaging forum for discussions on the future perspectives of the field. An additional aim is to plan an upcoming TREC/CLEF campaign.
Abstract:The use of Large Language Models (LLMs) for simulating user behavior in the domain of Interactive Information Retrieval has recently gained significant popularity. However, their application and capabilities remain highly debated and understudied. This study explores whether the underlying principles of contrastive training techniques, which have been effective for fine-tuning LLMs, can also be applied beneficially in the area of prompt engineering for user simulations. Previous research has shown that LLMs possess comprehensive world knowledge, which can be leveraged to provide accurate estimates of relevant documents. This study attempts to simulate a knowledge state by enhancing the model with additional implicit contextual information gained during the simulation. This approach enables the model to refine the scope of desired documents further. The primary objective of this study is to analyze how different modalities of contextual information influence the effectiveness of user simulations. Various user configurations were tested, where models are provided with summaries of already judged relevant, irrelevant, or both types of documents in a contrastive manner. The focus of this study is the assessment of the impact of the prompting techniques on the simulated user agent performance. We hereby lay the foundations for leveraging LLMs as part of more realistic simulated users.