Abstract:Large Language Models are useless for linguistics, as they are probabilistic models that require a vast amount of data to analyse externalized strings of words. In contrast, human language is underpinned by a mind-internal computational system that recursively generates hierarchical thought structures. The language system grows with minimal external input and can readily distinguish between real language and impossible languages.



Abstract:A sharp tension exists about the nature of human language between two opposite parties: those who believe that statistical surface distributions, in particular using measures like surprisal, provide a better understanding of language processing, vs. those who believe that discrete hierarchical structures implementing linguistic information such as syntactic ones are a better tool. In this paper, we show that this dichotomy is a false one. Relying on the fact that statistical measures can be defined on the basis of either structural or non-structural models, we provide empirical evidence that only models of surprisal that reflect syntactic structure are able to account for language regularities.