Abstract:Social platforms distribute information at unprecedented speed, which in turn accelerates the spread of misinformation and threatens public discourse. We present FakeZero, a fully client-side, cross-platform browser extension that flags unreliable posts on Facebook and X (formerly Twitter) while the user scrolls. All computation, DOM scraping, tokenisation, Transformer inference, and UI rendering run locally through the Chromium messaging API, so no personal data leaves the device.FakeZero employs a three-stage training curriculum: baseline fine-tuning and domain-adaptive training enhanced with focal loss, adversarial augmentation, and post-training quantisation. Evaluated on a dataset of 239,000 posts, the DistilBERT-Quant model (67.6 MB) reaches 97.1% macro-F1, 97.4% accuracy, and an AUROC of 0.996, with a median latency of approximately 103 ms on a commodity laptop. A memory-efficient TinyBERT-Quant variant retains 95.7% macro-F1 and 96.1% accuracy while shrinking the model to 14.7 MB and lowering latency to approximately 40 ms, showing that high-quality fake-news detection is feasible under tight resource budgets with only modest performance loss.By providing inline credibility cues, the extension can serve as a valuable tool for policymakers seeking to curb the spread of misinformation across social networks. With user consent, FakeZero also opens the door for researchers to collect large-scale datasets of fake news in the wild, enabling deeper analysis and the development of more robust detection techniques.
Abstract:Underground forums serve as hubs for cybercriminal activities, offering a space for anonymity and evasion of conventional online oversight. In these hidden communities, malicious actors collaborate to exchange illicit knowledge, tools, and tactics, driving a range of cyber threats from hacking techniques to the sale of stolen data, malware, and zero-day exploits. Identifying the key instigators (i.e., key hackers), behind these operations is essential but remains a complex challenge. This paper presents a novel method called EUREKHA (Enhancing User Representation for Key Hacker Identification in Underground Forums), designed to identify these key hackers by modeling each user as a textual sequence. This sequence is processed through a large language model (LLM) for domain-specific adaptation, with LLMs acting as feature extractors. These extracted features are then fed into a Graph Neural Network (GNN) to model user structural relationships, significantly improving identification accuracy. Furthermore, we employ BERTopic (Bidirectional Encoder Representations from Transformers Topic Modeling) to extract personalized topics from user-generated content, enabling multiple textual representations per user and optimizing the selection of the most representative sequence. Our study demonstrates that fine-tuned LLMs outperform state-of-the-art methods in identifying key hackers. Additionally, when combined with GNNs, our model achieves significant improvements, resulting in approximately 6% and 10% increases in accuracy and F1-score, respectively, over existing methods. EUREKHA was tested on the Hack-Forums dataset, and we provide open-source access to our code.