Department of Radiation Oncology, The University of Maryland School of Medicine
Abstract:Among the genetic algorithms generally used for optimization problems in the recent decades, quantum-inspired variants are known for fast and high-fitness convergence and small resource requirement. Here the application to the patient scheduling problem in proton therapy is reported. Quantum chromosomes are tailored to possess the superposed data of patient IDs and gantry statuses. Selection and repair strategies are also elaborated for reliable convergence to a clinically feasible schedule although the employed model is not complex. Clear advantage in population size is shown over the classical counterpart in our numerical results for both a medium-size test case and a large-size practical problem instance. It is, however, observed that program run time is rather long for the large-size practical case, which is due to the limitation of classical emulation and demands the forthcoming true quantum computation. Our results also revalidate the stability of the conventional classical genetic algorithm.
Abstract:Radiation therapy has presented a need for dynamic tracking of a target tumor volume. Fiducial markers such as implanted gold seeds have been used to gate radiation delivery but the markers are invasive and gating significantly increases treatment time. Pretreatment acquisition of a 4DCT allows for the development of accurate motion estimation for treatment planning. A deep convolutional neural network and subspace motion tracking is used to recover anatomical positions from a single radiograph projection in real-time. We approximate the nonlinear inverse of a diffeomorphic transformation composed with radiographic projection as a deep network that produces subspace coordinates to define the patient-specific deformation of the lungs from a baseline anatomic position. The geometric accuracy of the subspace projections on real patient data is similar to accuracy attained by original image registration between individual respiratory-phase image volumes.