Abstract:Despite recent advances in fairness-aware machine learning, predictive models often exhibit discriminatory behavior towards marginalized groups. Such unfairness might arise from biased training data, model design, or representational disparities across groups, posing significant challenges in high-stakes decision-making domains such as college admissions. While existing fair learning models aim to mitigate bias, achieving an optimal trade-off between fairness and accuracy remains a challenge. Moreover, the reliance on black-box models hinders interpretability, limiting their applicability in socially sensitive domains. To circumvent these issues, we propose integrating Kolmogorov-Arnold Networks (KANs) within a fair adversarial learning framework. Leveraging the adversarial robustness and interpretability of KANs, our approach facilitates stable adversarial learning. We derive theoretical insights into the spline-based KAN architecture that ensure stability during adversarial optimization. Additionally, an adaptive fairness penalty update mechanism is proposed to strike a balance between fairness and accuracy. We back these findings with empirical evidence on two real-world admissions datasets, demonstrating the proposed framework's efficiency in achieving fairness across sensitive attributes while preserving predictive performance.
Abstract:This article addresses the challenge of validating the admission committee's decisions for undergraduate admissions. In recent years, the traditional review process has struggled to handle the overwhelmingly large amount of applicants' data. Moreover, this traditional assessment often leads to human bias, which might result in discrimination among applicants. Although classical machine learning-based approaches exist that aim to verify the quantitative assessment made by the application reviewers, these methods lack scalability and suffer from performance issues when a large volume of data is in place. In this context, we propose deep learning-based classifiers, namely Feed-Forward and Input Convex neural networks, which overcome the challenges faced by the existing methods. Furthermore, we give additional insights into our model by incorporating an interpretability module, namely LIME. Our training and test datasets comprise applicants' data with a wide range of variables and information. Our models achieve higher accuracy compared to the best-performing traditional machine learning-based approach by a considerable margin of 3.03\%. Additionally, we show the sensitivity of different features and their relative impacts on the overall admission decision using the LIME technique.