Abstract:In this paper, we introduce the A2 Copula Spatial Bayesian Neural Network (A2-SBNN), a predictive spatial model designed to map coordinates to continuous fields while capturing both typical spatial patterns and extreme dependencies. By embedding the dual-tail novel Archimedean copula viz. A2 directly into the network's weight initialization, A2-SBNN naturally models complex spatial relationships, including rare co-movements in the data. The model is trained through a calibration-driven process combining Wasserstein loss, moment matching, and correlation penalties to refine predictions and manage uncertainty. Simulation results show that A2-SBNN consistently delivers high accuracy across a wide range of dependency strengths, offering a new, effective solution for spatial data modeling beyond traditional Gaussian-based approaches.
Abstract:Accurate diabetes risk prediction relies on identifying key features from complex health datasets, but conventional methods like mutual information (MI) filters and genetic algorithms (GAs) often overlook extreme dependencies critical for high-risk subpopulations. In this study we introduce a feature-selection framework using the upper-tail dependence coefficient ({\lambda}U) of the novel A2 copula, which quantifies how often extreme higher values of a predictor co-occur with diabetes diagnoses (target variable). Applied to the CDC Diabetes Health Indicators dataset (n=253,680), our method prioritizes five predictors (self-reported general health, high blood pressure, body mass index, mobility limitations, and high cholesterol levels) based on upper tail dependencies. These features match or outperform MI and GA selected subsets across four classifiers (Random Forest, XGBoost, Logistic Regression, Gradient Boosting), achieving accuracy up to 86.5% (XGBoost) and AUC up to 0.806 (Gradient Boosting), rivaling the full 21-feature model. Permutation importance confirms clinical relevance, with BMI and general health driving accuracy. To our knowledge, this is the first work to apply a copula's upper-tail dependence for supervised feature selection, bridging extreme-value theory and machine learning to deliver a practical toolkit for diabetes prevention.