Abstract:Knowledge graph completion aims to address the gaps of knowledge bases by adding new triples that represent facts. The complexity of this task depends on how many parts of a triple are already known. Instance completion involves predicting the relation-tail pair when only the head is given (h, ?, ?). Notably, modern knowledge bases often contain entity descriptions and types, which can provide valuable context for inferring missing facts. By leveraging these textual descriptions and the ability of large language models to extract facts from them and recognize patterns within the knowledge graph schema, we propose an LLM-powered, end-to-end instance completion approach. Specifically, we introduce GenIC: a two-step Generative Instance Completion framework. The first step focuses on property prediction, treated as a multi-label classification task. The second step is link prediction, framed as a generative sequence-to-sequence task. Experimental results on three datasets show that our method outperforms existing baselines. Our code is available at https://github.com/amal-gader/genic.
Abstract:Ontology learning in complex domains, such as life sciences, poses significant challenges for current Large Language Models (LLMs). Existing LLMs struggle to generate ontologies with multiple hierarchical levels, rich interconnections, and comprehensive class coverage due to constraints on the number of tokens they can generate and inadequate domain adaptation. To address these issues, we extend the NeOn-GPT pipeline for ontology learning using LLMs with advanced prompt engineering techniques and ontology reuse to enhance the generated ontologies' domain-specific reasoning and structural depth. Our work evaluates the capabilities of LLMs in ontology learning in the context of highly specialized and complex domains such as life science domains. To assess the logical consistency, completeness, and scalability of the generated ontologies, we use the AquaDiva ontology developed and used in the collaborative research center AquaDiva as a case study. Our evaluation shows the viability of LLMs for ontology learning in specialized domains, providing solutions to longstanding limitations in model performance and scalability.