Abstract:Amnesic probing is a technique used to examine the influence of specific linguistic information on the behaviour of a model. This involves identifying and removing the relevant information and then assessing whether the model's performance on the main task changes. If the removed information is relevant, the model's performance should decline. The difficulty with this approach lies in removing only the target information while leaving other information unchanged. It has been shown that Iterative Nullspace Projection (INLP), a widely used removal technique, introduces random modifications to representations when eliminating target information. We demonstrate that Mean Projection (MP) and LEACE, two proposed alternatives, remove information in a more targeted manner, thereby enhancing the potential for obtaining behavioural explanations through Amnesic Probing.
Abstract:Multiple measures, such as WEAT or MAC, attempt to quantify the magnitude of bias present in word embeddings in terms of a single-number metric. However, such metrics and the related statistical significance calculations rely on treating pre-averaged data as individual data points and employing bootstrapping techniques with low sample sizes. We show that similar results can be easily obtained using such methods even if the data are generated by a null model lacking the intended bias. Consequently, we argue that this approach generates false confidence. To address this issue, we propose a Bayesian alternative: hierarchical Bayesian modeling, which enables a more uncertainty-sensitive inspection of bias in word embeddings at different levels of granularity. To showcase our method, we apply it to Religion, Gender, and Race word lists from the original research, together with our control neutral word lists. We deploy the method using Google, Glove, and Reddit embeddings. Further, we utilize our approach to evaluate a debiasing technique applied to Reddit word embedding. Our findings reveal a more complex landscape than suggested by the proponents of single-number metrics. The datasets and source code for the paper are publicly available.