Abstract:Large language models (LLMs) acquire vast knowledge from large text corpora, but this information can become outdated or inaccurate. Since retraining is computationally expensive, knowledge editing offers an efficient alternative -- modifying internal knowledge without full retraining. These methods aim to update facts precisely while preserving the model's overall capabilities. While existing surveys focus on the mechanism of editing (e.g., parameter changes vs. external memory), they often overlook the function of the knowledge being edited. This survey introduces a novel, complementary function-based taxonomy to provide a more holistic view. We examine how different mechanisms apply to various knowledge types -- factual, temporal, conceptual, commonsense, and social -- highlighting how editing effectiveness depends on the nature of the target knowledge. By organizing our review along these two axes, we map the current landscape, outline the strengths and limitations of existing methods, define the problem formally, survey evaluation tasks and datasets, and conclude with open challenges and future directions.
Abstract:LLMs often excel on standard benchmarks but falter on real-world tasks. We introduce DeepQuestion, a scalable automated framework that augments existing datasets based on Bloom's taxonomy and creates novel questions that trace original solution paths to probe evaluative and creative skills. Extensive experiments across ten open-source and proprietary models, covering both general-purpose and reasoning LLMs, reveal substantial performance drops (even up to 70% accuracy loss) on higher-order tasks, underscoring persistent gaps in deep reasoning. Our work highlights the need for cognitively diverse benchmarks to advance LLM progress. DeepQuestion and related datasets will be released upon acceptance of the paper.