Abstract:Network topology optimization (NTO) via busbar splitting can mitigate transmission grid congestion and reduce redispatch costs. However, solving this mixed-integer non-linear problem for large-scale systems in near-real-time is currently intractable with existing solvers. Machine learning (ML) approaches have emerged as a promising alternative, but they have limited generalization to unseen topologies, varying operating conditions, and different systems, which limits their practical applicability. This paper formulates NTO for congestion management problem considering linearized AC PF, and proposes a graph neural network (GNN)-accelerated approach. We develop a heterogeneous edge-aware message passing NN to predict effective busbar splitting actions as candidate NTO solutions. The proposed GNN captures local flow patterns, achieves generalization to unseen topology changes, and improves transferability across systems. Case studies show up to 4 orders-of-magnitude speed-up, delivering AC-feasible solutions within one minute and a 2.3% optimality gap on the GOC 2000-bus system. These results demonstrate a significant step toward near-real-time NTO for large-scale systems with topology and cross-system generalization.
Abstract:With the increasing penetration of renewable power sources such as wind and solar, accurate short-term, nowcasting renewable power prediction is becoming increasingly important. This paper investigates the multi-modal (MM) learning and end-to-end (E2E) learning for nowcasting renewable power as an intermediate to energy management systems. MM combines features from all-sky imagery and meteorological sensor data as two modalities to predict renewable power generation that otherwise could not be combined effectively. The combined, predicted values are then input to a differentiable optimal power flow (OPF) formulation simulating the energy management. For the first time, MM is combined with E2E training of the model that minimises the expected total system cost. The case study tests the proposed methodology on the real sky and meteorological data from the Netherlands. In our study, the proposed MM-E2E model reduced system cost by 30% compared to uni-modal baselines.