Abstract:Polymers exhibit complex architectures and diverse properties that place them at the center of contemporary research in chemistry and materials science. As conventional computational techniques, even multi-scale ones, struggle to capture this complexity, quantum computing offers a promising alternative framework for extracting structure-property relationships. Noisy Intermediate-Scale Quantum (NISQ) devices are commonly used to explore the implementation of algorithms, including quantum neural networks for classification tasks, despite ongoing debate regarding their practical impact. We present a hybrid classical-quantum formalism that couples a classical deep neural network for polymer featurization with a single-photon-based quantum classifier native to photonic quantum computing. This pipeline successfully classifies polymer species by their optical gap, with performance in line between CPU-based noisy simulations and a proof-of-principle run on Quandela's Ascella quantum processor. These findings demonstrate the effectiveness of the proposed computational workflow and indicate that chemistryfrelated classification tasks can already be tackled under the constraints of today's NISQ devices.
Abstract:We present a hybrid classical-quantum approach to the binary classification of polymer structures. Two polymer classes visual (VIS) and near-infrared (NIR) are defined based on the size of the polymer gaps. The hybrid approach combines one of the three methods, Gaussian Kernel Method, Quantum-Enhanced Random Kitchen Sinks or Variational Quantum Classifier, implemented by linear quantum photonic circuits (LQPCs), with a classical deep neural network (DNN) feature extractor. The latter extracts from the classical data information about samples chemical structure. It also reduces the data dimensions yielding compact 2-dimensional data vectors that are then fed to the LQPCs. We adopt the photonic-based data-embedding scheme, proposed by Gan et al. [EPJ Quantum Technol. 9, 16 (2022)] to embed the classical 2-dimensional data vectors into the higher-dimensional Fock space. This hybrid classical-quantum strategy permits to obtain accurate noisy intermediate-scale quantum-compatible classifiers by leveraging Fock states with only a few photons. The models obtained using either of the three hybrid methods successfully classified the VIS and NIR polymers. Their accuracy is comparable as measured by their scores ranging from 0.86 to 0.88. These findings demonstrate that our hybrid approach that uses photonic quantum computing captures chemistry and structure-property correlation patterns in real polymer data. They also open up perspectives of employing quantum computing to complex chemical structures when a larger number of logical qubits is available.