Abstract:This research analyzed and compared the multi-modal approach in the Vision Transformer(EVA-ViT) based image encoder with the LlaMA or ChatGPT LLM to reduce the hallucination problem and detect diseases in chest x-ray images. In this research, we utilized the NIH Chest X-ray image to train the model and compared it in image-based RAG, text-based RAG, and baseline. [3] [5] In a result, the text-based RAG[2] e!ectively reduces the hallucination problem by using external knowledge information, and the image-based RAG improved the prediction con"dence and calibration by using the KNN methods. [4] Moreover, the GPT LLM showed better performance, a low hallucination rate, and better Expected Calibration Error(ECE) than Llama Llama-based model. This research shows the challenge of data imbalance, a complex multi-stage structure, but suggests a large experience environment and a balanced example of use.
Abstract:We propose a probabilistic interpretation of exponential dot product attention of transformers and contrastive learning based off of exponential families. The attention sublayer of transformers is equivalent to a gradient ascent step of the log normalizer, which is the log-sum-exp term in the Hopfield theory of attention. This ascent step induces a parallel expansion of points, which is counterbalanced by a contraction from layer normalization. We also state theoretical limitations of our theory and the Hopfield theory and suggest directions for resolution.