Abstract:Decoded Neurofeedback (DecNef) is a flourishing non-invasive approach to brain modulation with wide-ranging applications in neuromedicine and cognitive neuroscience. However, progress in DecNef research remains constrained by subject-dependent learning variability, reliance on indirect measures to quantify progress, and the high cost and time demands of experimentation. We present DecNefLab, a modular and interpretable simulation framework that formalizes DecNef as a machine learning problem. Beyond providing a virtual laboratory, DecNefLab enables researchers to model, analyze and understand neurofeedback dynamics. Using latent variable generative models as simulated participants, DecNefLab allows direct observation of internal cognitive states and systematic evaluation of how different protocol designs and subject characteristics influence learning. We demonstrate how this approach can (i) reproduce empirical phenomena of DecNef learning, (ii) identify conditions under which DecNef feedback fails to induce learning, and (iii) guide the design of more robust and reliable DecNef protocols in silico before human implementation. In summary, DecNefLab bridges computational modeling and cognitive neuroscience, offering a principled foundation for methodological innovation, robust protocol design, and ultimately, a deeper understanding of DecNef-based brain modulation.
Abstract:In cognitive neuroscience and brain-computer interface research, accurately predicting imagined stimuli is crucial. This study investigates the effectiveness of Domain Adaptation (DA) in enhancing imagery prediction using primarily visual data from fMRI scans of 18 subjects. Initially, we train a baseline model on visual stimuli to predict imagined stimuli, utilizing data from 14 brain regions. We then develop several models to improve imagery prediction, comparing different DA methods. Our results demonstrate that DA significantly enhances imagery prediction, especially with the Regular Transfer approach. We then conduct a DA-enhanced searchlight analysis using Regular Transfer, followed by permutation-based statistical tests to identify brain regions where imagery decoding is consistently above chance across subjects. Our DA-enhanced searchlight predicts imagery contents in a highly distributed set of brain regions, including the visual cortex and the frontoparietal cortex, thereby outperforming standard cross-domain classification methods. The complete code and data for this paper have been made openly available for the use of the scientific community.