Abstract:Modern representation learning increasingly relies on unsupervised and self-supervised methods trained on large-scale unlabeled data. While these approaches achieve impressive generalization across tasks and domains, evaluating embedding quality without labels remains an open challenge. In this work, we propose Persistence, a topology-aware metric based on persistent homology that quantifies the geometric structure and topological richness of embedding spaces in a fully unsupervised manner. Unlike metrics that assume linear separability or rely on covariance structure, Persistence captures global and multi-scale organization. Empirical results across diverse domains show that Persistence consistently achieves top-tier correlations with downstream performance, outperforming existing unsupervised metrics and enabling reliable model and hyperparameter selection.

Abstract:This paper is devoted to the problem of blob detection in manifold-valued images. Our solution is based on new definitions of blob response functions. We define the blob response functions by means of curvatures of an image graph, considered as a submanifold. We call the proposed framework Riemannian blob detection. We prove that our approach can be viewed as a generalization of the grayscale blob detection technique. An expression of the Riemannian blob response functions through the image Hessian is derived. We provide experiments for the case of vector-valued images on 2D surfaces: the proposed framework is tested on the task of chemical compounds classification.