Abstract:In the realm of music recommendation, sequential recommenders have shown promise in capturing the dynamic nature of music consumption. A key characteristic of this domain is repetitive listening, where users frequently replay familiar tracks. To capture these repetition patterns, recent research has introduced Personalised Popularity Scores (PPS), which quantify user-specific preferences based on historical frequency. While PPS enhances relevance in recommendation, it often reinforces already-known content, limiting the system's ability to surface novel or serendipitous items - key elements for fostering long-term user engagement and satisfaction. To address this limitation, we build upon RecJPQ, a Transformer-based framework initially developed to improve scalability in large-item catalogues through sub-item decomposition. We repurpose RecJPQ's sub-item architecture to model personalised popularity at a finer granularity. This allows us to capture shared repetition patterns across sub-embeddings - latent structures not accessible through item-level popularity alone. We propose a novel integration of sub-ID-level personalised popularity within the RecJPQ framework, enabling explicit control over the trade-off between accuracy and personalised novelty. Our sub-ID-level PPS method (sPPS) consistently outperforms item-level PPS by achieving significantly higher personalised novelty without compromising recommendation accuracy. Code and experiments are publicly available at https://github.com/sisinflab/Sub-id-Popularity.
Abstract:In the realm of music recommendation, sequential recommender systems have shown promise in capturing the dynamic nature of music consumption. Nevertheless, traditional Transformer-based models, such as SASRec and BERT4Rec, while effective, encounter challenges due to the unique characteristics of music listening habits. In fact, existing models struggle to create a coherent listening experience due to rapidly evolving preferences. Moreover, music consumption is characterized by a prevalence of repeated listening, i.e., users frequently return to their favourite tracks, an important signal that could be framed as individual or personalized popularity. This paper addresses these challenges by introducing a novel approach that incorporates personalized popularity information into sequential recommendation. By combining user-item popularity scores with model-generated scores, our method effectively balances the exploration of new music with the satisfaction of user preferences. Experimental results demonstrate that a Personalized Most Popular recommender, a method solely based on user-specific popularity, outperforms existing state-of-the-art models. Furthermore, augmenting Transformer-based models with personalized popularity awareness yields superior performance, showing improvements ranging from 25.2% to 69.8%. The code for this paper is available at https://github.com/sisinflab/personalized-popularity-awareness.