Abstract:Recent progress in large language models (LLMs) has shown strong potential for multimodal reasoning beyond natural language. In this work, we explore the use of a fine-tuned Vision-Language Model (VLM), based on LLaMA 3.2, for classifying neutrino interactions from pixelated detector images in high-energy physics (HEP) experiments. We benchmark its performance against an established CNN baseline used in experiments like NOvA and DUNE, evaluating metrics such as classification accuracy, precision, recall, and AUC-ROC. Our results show that the VLM not only matches or exceeds CNN performance but also enables richer reasoning and better integration of auxiliary textual or semantic context. These findings suggest that VLMs offer a promising general-purpose backbone for event classification in HEP, paving the way for multimodal approaches in experimental neutrino physics.
Abstract:The complex events observed at the NOvA long-baseline neutrino oscillation experiment contain vital information for understanding the most elusive particles in the standard model. The NOvA detectors observe interactions of neutrinos from the NuMI beam at Fermilab. Associating the particles produced in these interaction events to their source particles, a process known as reconstruction, is critical for accurately measuring key parameters of the standard model. Events may contain several particles, each producing sparse high-dimensional spatial observations, and current methods are limited to evaluating individual particles. To accurately label these numerous, high-dimensional observations, we present a novel neural network architecture that combines the spatial learning enabled by convolutions with the contextual learning enabled by attention. This joint approach, TransformerCVN, simultaneously classifies each event and reconstructs every individual particle's identity. TransformerCVN classifies events with 90\% accuracy and improves the reconstruction of individual particles by 6\% over baseline methods which lack the integrated architecture of TransformerCVN. In addition, this architecture enables us to perform several interpretability studies which provide insights into the network's predictions and show that TransformerCVN discovers several fundamental principles that stem from the standard model.