Abstract:Electron back-scatter diffraction (EBSD) has traditionally relied upon methods such as the Hough transform and dictionary Indexing to interpret diffraction patterns and extract crystallographic orientation. However, these methods encounter significant limitations, particularly when operating at high scanning speeds, where the exposure time per pattern is decreased beyond the operating sensitivity of CCD camera. Hence the signal to noise ratio decreases for the observed pattern which makes the pattern noisy, leading to reduced indexing accuracy. This research work aims to develop generative machine learning models for the post-processing or on-the-fly processing of Kikuchi patterns which are capable of restoring noisy EBSD patterns obtained at high scan speeds. These restored patterns can be used for the determination of crystal orientations to provide reliable indexing results. We compare the performance of such generative models in enhancing the quality of patterns captured at short exposure times (high scan speeds). An interesting observation is that the methodology is not data-hungry as typical machine learning methods.
Abstract:Property prediction of materials has recently been of high interest in the recent years in the field of material science. Various Physics-based and Machine Learning models have already been developed, that can give good results. However, they are not accurate enough and are inadequate for critical applications. The traditional machine learning models try to predict properties based on the features extracted from the molecules, which are not easily available most of the time. In this paper, a recently developed novel Deep Learning method, the Graph Neural Network (GNN), has been applied, allowing us to predict properties directly only the Graph-based structures of the molecules. SMILES (Simplified Molecular Input Line Entry System) representation of the molecules has been used in the present study as input data format, which has been further converted into a graph database, which constitutes the training data. This article highlights the detailed description of the novel GRU-based methodology to map the inputs that have been used. Emphasis on highlighting both the regressive property as well as the classification-based property of the GNN backbone. A detailed description of the Variational Autoencoder (VAE) and the end-to-end learning method has been given to highlight the multi-class multi-label property prediction of the backbone. The results have been compared with standard benchmark datasets as well as some newly developed datasets. All performance metrics which have been used have been clearly defined as well as their reason for choice. Keywords: GNN, VAE, SMILES, multi-label multi-class classification, GRU