Abstract:We propose FairPO, a novel framework designed to promote fairness in multi-label classification by directly optimizing preference signals with a group robustness perspective. In our framework, the set of labels is partitioned into privileged and non-privileged groups, and a preference-based loss inspired by Direct Preference Optimization (DPO) is employed to more effectively differentiate true positive labels from confusing negatives within the privileged group, while preserving baseline classification performance for non-privileged labels. By framing the learning problem as a robust optimization over groups, our approach dynamically adjusts the training emphasis toward groups with poorer performance, thereby mitigating bias and ensuring a fairer treatment across diverse label categories. In addition, we outline plans to extend this approach by investigating alternative loss formulations such as Simple Preference Optimisation (SimPO) and Contrastive Preference Optimization (CPO) to exploit reference-free reward formulations and contrastive training signals. Furthermore, we plan to extend FairPO with multilabel generation capabilities, enabling the model to dynamically generate diverse and coherent label sets for ambiguous inputs.