Abstract:Longitudinal image registration enables studying temporal changes in brain morphology which is useful in applications where monitoring the growth or atrophy of specific structures is important. However this task is challenging due to; noise/artifacts in the data and quantifying small anatomical changes between sequential scans. We propose a novel longitudinal registration method that models structural changes using temporally parameterized neural displacement fields. Specifically, we implement an implicit neural representation (INR) using a multi-layer perceptron that serves as a continuous coordinate-based approximation of the deformation field at any time point. In effect, for any N scans of a particular subject, our model takes as input a 3D spatial coordinate location x, y, z and a corresponding temporal representation t and learns to describe the continuous morphology of structures for both observed and unobserved points in time. Furthermore, we leverage the analytic derivatives of the INR to derive a new regularization function that enforces monotonic rate of change in the trajectory of the voxels, which is shown to provide more biologically plausible patterns. We demonstrate the effectiveness of our method on 4D brain MR registration.
Abstract:Methods for medical image registration infer geometric transformations that align pairs/groups of images by maximising an image similarity metric. This problem is ill-posed as several solutions may have equivalent likelihoods, also optimising purely for image similarity can yield implausible transformations. For these reasons regularization terms are essential to obtain meaningful registration results. However, this requires the introduction of at least one hyperparameter often termed {\lambda}, that serves as a tradeoff between loss terms. In some situations, the quality of the estimated transformation greatly depends on hyperparameter choice, and different choices may be required depending on the characteristics of the data. Analyzing the effect of these hyperparameters requires labelled data, which is not commonly available at test-time. In this paper, we propose a method for evaluating the influence of hyperparameters and subsequently selecting an optimal value for given image pairs. Our approach which we call HyperPredict, implements a Multi-Layer Perceptron that learns the effect of selecting particular hyperparameters for registering an image pair by predicting the resulting segmentation overlap and measure of deformation smoothness. This approach enables us to select optimal hyperparameters at test time without requiring labelled data, removing the need for a one-size-fits-all cross-validation approach. Furthermore, the criteria used to define optimal hyperparameter is flexible post-training, allowing us to efficiently choose specific properties. We evaluate our proposed method on the OASIS brain MR dataset using a recent deep learning approach(cLapIRN) and an algorithmic method(Niftyreg). Our results demonstrate good performance in predicting the effects of regularization hyperparameters and highlight the benefits of our image-pair specific approach to hyperparameter selection.