Abstract:Despite the growing interest in the integration of reconfigurable intelligent surfaces (RIS) into next-generation wireless communications systems, a critical gap remains in understanding what the dimensions of an RIS must be to provide meaningful performance gains across realistic deployment scenarios. This paper addresses this challenge by presenting a practical and scenario-aware methodology for determining optimal RIS dimensions, tailored to specific frequency bands, environments, and use cases. Leveraging a realistic simulation model that incorporates angular scattering characteristics, practical network node locations, and propagation constraints, we evaluate the RIS-assisted performance in a diverse set of configurations. For selected use-cases, we quantify key performance indicators such as average signal-to-noise ratio and outage probability, and we demonstrate how RIS size impacts system reliability. Our findings show that RIS deployment effectiveness is highly sensitive to both physical size and geometric placement, and that there is no one-size-fits-all solution. The proposed framework, supported by detailed use case tables and validated through comprehensive simulations, offers design guidelines for operators and vendors seeking to deploy RIS in practical wireless network settings.
Abstract:Reconfigurable intelligent surface (RIS) has emerged as a groundbreaking technology for 6G wireless communication networks, enabling cost-effective control over wireless propagation environment. By dynamically manipulating its codebook so as to deflect the direction of the reflected electromagnetic wave, RIS can achieve enhanced signal quality, extended coverage, and interference mitigation. This study presents experimental performance of ZTE Dynamic 2.0 RIS products through a series of real-world tests conducted on Turkcell's millimeter-wave (mmWave) testbed. The evaluation involves network coverage extension in urban areas, multi-user efficiency, and the integration of virtual reality technology to support immersive applications in next-generation 6G networks. Through a comprehensive measurement-based analysis, the performance of the RIS product is demonstrated, highlighting its potential to address critical challenges in mmWave communications and to enable advanced 6G use cases.