Abstract:Understanding the factors contributing to traffic crashes and developing strategies to mitigate their severity is essential. Traditional statistical methods and machine learning models often struggle to capture the complex interactions between various factors and the unique characteristics of each crash. This research leverages large language model (LLM) to analyze freeway crash data and provide crash causation analysis accordingly. By compiling 226 traffic safety studies related to freeway crashes, a training dataset encompassing environmental, driver, traffic, and geometric design factors was created. The Llama3 8B model was fine-tuned using QLoRA to enhance its understanding of freeway crashes and their contributing factors, as covered in these studies. The fine-tuned Llama3 8B model was then used to identify crash causation without pre-labeled data through zero-shot classification, providing comprehensive explanations to ensure that the identified causes were reasonable and aligned with existing research. Results demonstrate that LLMs effectively identify primary crash causes such as alcohol-impaired driving, speeding, aggressive driving, and driver inattention. Incorporating event data, such as road maintenance, offers more profound insights. The model's practical applicability and potential to improve traffic safety measures were validated by a high level of agreement among researchers in the field of traffic safety, as reflected in questionnaire results with 88.89%. This research highlights the complex nature of traffic crashes and how LLMs can be used for comprehensive analysis of crash causation and other contributing factors. Moreover, it provides valuable insights and potential countermeasures to aid planners and policymakers in developing more effective and efficient traffic safety practices.
Abstract:Understanding and predicting human behavior in-thewild, particularly at urban intersections, remains crucial for enhancing interaction safety between road users. Among the most critical behaviors are crossing intentions of Vulnerable Road Users (VRUs), where misinterpretation may result in dangerous conflicts with oncoming vehicles. In this work, we propose the VRU-CIPI framework with a sequential attention-based model designed to predict VRU crossing intentions at intersections. VRU-CIPI employs Gated Recurrent Unit (GRU) to capture temporal dynamics in VRU movements, combined with a multi-head Transformer self-attention mechanism to encode contextual and spatial dependencies critical for predicting crossing direction. Evaluated on UCF-VRU dataset, our proposed achieves state-of-the-art performance with an accuracy of 96.45% and achieving real-time inference speed reaching 33 frames per second. Furthermore, by integrating with Infrastructure-to-Vehicles (I2V) communication, our approach can proactively enhance intersection safety through timely activation of crossing signals and providing early warnings to connected vehicles, ensuring smoother and safer interactions for all road users.
Abstract:Computer vision has advanced research methodologies, enhancing system services across various fields. It is a core component in traffic monitoring systems for improving road safety; however, these monitoring systems don't preserve the privacy of pedestrians who appear in the videos, potentially revealing their identities. Addressing this issue, our paper introduces Video-to-Text Pedestrian Monitoring (VTPM), which monitors pedestrian movements at intersections and generates real-time textual reports, including traffic signal and weather information. VTPM uses computer vision models for pedestrian detection and tracking, achieving a latency of 0.05 seconds per video frame. Additionally, it detects crossing violations with 90.2% accuracy by incorporating traffic signal data. The proposed framework is equipped with Phi-3 mini-4k to generate real-time textual reports of pedestrian activity while stating safety concerns like crossing violations, conflicts, and the impact of weather on their behavior with latency of 0.33 seconds. To enhance comprehensive analysis of the generated textual reports, Phi-3 medium is fine-tuned for historical analysis of these generated textual reports. This fine-tuning enables more reliable analysis about the pedestrian safety at intersections, effectively detecting patterns and safety critical events. The proposed VTPM offers a more efficient alternative to video footage by using textual reports reducing memory usage, saving up to 253 million percent, eliminating privacy issues, and enabling comprehensive interactive historical analysis.