Abstract:Unmanned Aerial Vehicle (UAV) swarms offer versatile applications in logistics, agriculture, and surveillance, yet controlling them requires expert knowledge for safety and feasibility. Traditional static methods limit adaptability, while Large Language Models (LLMs) enable natural language control but generate unsafe trajectories due to lacking physical grounding. This paper introduces SkySim, a ROS2-based simulation framework in Gazebo that decouples LLM high-level planning from low-level safety enforcement. Using Gemini 3.5 Pro, SkySim translates user commands (e.g., "Form a circle") into spatial waypoints, informed by real-time drone states. An Artificial Potential Field (APF) safety filter applies minimal adjustments for collision avoidance, kinematic limits, and geo-fencing, ensuring feasible execution at 20 Hz. Experiments with swarms of 3, 10, and 30 Crazyflie drones validate spatial reasoning accuracy (100% across tested geometric primitives), real-time collision prevention, and scalability. SkySim empowers non-experts to iteratively refine behaviors, bridging AI cognition with robotic safety for dynamic environments. Future work targets hardware integration.
Abstract:Autonomous racing offers a rigorous setting to stress test perception, planning, and control under high speed and uncertainty. This paper proposes an approach to design and evaluate a software stack for an autonomous race car in CARLA: Car Learning to Act simulator, targeting competitive driving performance in the Formula Student UK Driverless (FS-AI) 2025 competition. By utilizing a 360° light detection and ranging (LiDAR), stereo camera, global navigation satellite system (GNSS), and inertial measurement unit (IMU) sensor via ROS 2 (Robot Operating System), the system reliably detects the cones marking the track boundaries at distances of up to 35 m. Optimized trajectories are computed considering vehicle dynamics and simulated environmental factors such as visibility and lighting to navigate the track efficiently. The complete autonomous stack is implemented in ROS 2 and validated extensively in CARLA on a dedicated vehicle (ADS-DV) before being ported to the actual hardware, which includes the Jetson AGX Orin 64GB, ZED2i Stereo Camera, Robosense Helios 16P LiDAR, and CHCNAV Inertial Navigation System (INS).