Abstract:The rapid proliferation of misinformation in digital media demands solutions that go beyond isolated Large Language Model(LLM) or AI Agent based detection methods. This paper introduces a novel multi-agent framework that covers the complete misinformation lifecycle: classification, detection, correction, and source verification to deliver more transparent and reliable outcomes. In contrast to single-agent or monolithic architectures, our approach employs five specialized agents: an Indexer agent for dynamically maintaining trusted repositories, a Classifier agent for labeling misinformation types, an Extractor agent for evidence based retrieval and ranking, a Corrector agent for generating fact-based correction and a Verification agent for validating outputs and tracking source credibility. Each agent can be individually evaluated and optimized, ensuring scalability and adaptability as new types of misinformation and data sources emerge. By decomposing the misinformation lifecycle into specialized agents - our framework enhances scalability, modularity, and explainability. This paper proposes a high-level system overview, agent design with emphasis on transparency, evidence-based outputs, and source provenance to support robust misinformation detection and correction at scale.
Abstract:Evaluation is fundamental in optimizing search experiences and supporting diverse user intents in Information Retrieval (IR). Traditional search evaluation methods primarily rely on relevance labels, which assess how well retrieved documents match a user's query. However, relevance alone fails to capture a search system's effectiveness in helping users achieve their search goals, making usefulness a critical evaluation criterion. In this paper, we explore an alternative approach: LLM-generated usefulness labels, which incorporate both implicit and explicit user behavior signals to evaluate document usefulness. We propose Task-aware Rubric-based Usefulness Evaluation (TRUE), a rubric-driven evaluation method that employs iterative sampling and reasoning to model complex search behavior patterns. Our findings show that (i) LLMs can generate moderate usefulness labels by leveraging comprehensive search session history incorporating personalization and contextual understanding, and (ii) fine-tuned LLMs improve usefulness judgments when provided with structured search session contexts. Additionally, we examine whether LLMs can distinguish between relevance and usefulness, particularly in cases where this divergence impacts search success. We also conduct an ablation study to identify key metrics for accurate usefulness label generation, optimizing for token efficiency and cost-effectiveness in real-world applications. This study advances LLM-based usefulness evaluation by refining key user metrics, exploring LLM-generated label reliability, and ensuring feasibility for large-scale search systems.